Agenda

• Recap of last update
 – Concept
 – History

• Progress made since
 – Absorber Components
 – Vacuum Box
 – Additional testing of existing prototype

• Next steps
MEBT Absorber- Concept to Finalized Design

- Previous Update from June: PIP-II-doc-593
- 650mm maximum length
- 0.029 rad grazing angle
- ~17 W/mm² maximum absorbed power density of the face of the absorber
Design History

- Design has been evolving for the past several years
 - Initial concept for Cu absorber (Hassan/Lebedev)
 - All-Mo-TZM absorber to resist blistering
 - TZM/Al thermal contact design

- Prototypes were built and tested in an electron test beam
 - Walton “Pre-Prototype” – better than expected thermal contact
 - “Prototype 1” – met PIP2IT requirements, tricky fabrication
 - “Prototype 2” – met PIP2IT requirements, more manufacturable
Secondary Absorber without sawtooth design

From previous work by Y. Eidelman, it is estimated that ~25% of incoming energy is reflected from the absorber surface.

- >800 Watts Escape
- The potential of reflected particles to pass through the downstream aperture and escape the absorber box was only recently understood. This drives the need for a more complicated (textured) absorber surface.
Energy Reflection – Sawtooth surface

• Saw tooth surface creates a shadow region which prevents reflected beam from traveling into.
• The closer downstream teeth have smaller shadow regions than the teeth upstream.
Agenda

• Recap of last update
 – Concept
 – History
• Progress made since
 – Absorber Components
 – Vacuum Box
 – Additional testing of existing prototype
• Next steps
Absorber Components - Sawtooth Surface design

- Used to redirect secondary particles
- Method of fabrication: Surface gridding
- Design is complete. Drawings being finalized
Secondary Absorber with sawtooth design

- Sawtooth design with “New” teeth
- <10 Watts Escape

Particle incidence on downstream wall of absorber box
Comparing the Two

Without

With

Absorber

Absorber
Absorber Components - Strong Back Design

- Used to clamp the TZM pieces together
- Able to hold a large clamping load
- Easily installable
- Design is complete. Drawings being finalized

- Strongback supports the assembly of the TZM pieces which consists of the sawteeth piece and the two side fins
- Ensure plenty of compression to maximize conduction
Combing the saw-teeth with the side fins

- Strongback
- Waterback
- Sawteeth Piece
- Set Pin
- Side Fin
- Belleville washers
Absorber Components – Surface Imaging

• Simple flat fold mirror protects viewport from direct irradiation

- Glass first-surface mirror, <1λ, protected Al coating
- Camera location
- Standard fused-silica viewport
- Thermal-conductive path to air
Agenda

• Recap of last update
 – Concept
 – History

• Progress made since
 – Absorber Components
 – Vacuum Box
 – Additional testing of existing prototype

• Next steps
Vacuum Box

- Design is complete
- The downstream wall (shown in green) was made with a grid pattern to localize thermal stresses
- Currently out for fabrication
Vacuum Box - Secondary Absorber

- Secondary Absorber includes multiple layers
- Heat management involves conduction and convection
Vacuum Box- Top Lid

- Design is still on going
- Not as long of a lead time
- Place holder lid for testing and pumping down is currently out for fabrication with the vacuum Box
Agenda

• Recap of last update
 – Concept
 – History

• Progress made since
 – Absorber Components
 – Vacuum Box
 – Additional testing of existing prototype

• Next steps
Prototype 2

- 6 PXIE-like TZM fins
 - Graphite thermal contact
 - Individually preloaded

- Aluminum cooling strongback
 - Transverse cooling channels

- Aluminum plumbing to air
 - No in-vacuum material transitions
Additional testing of existing prototype in PIP2IT

• Beam was run to existing prototype during the recent long run
 – 10mA, 1.75ms pulse, 20Hz, ~700 W incident power
 – See e-log entry 119747

• Absorber specific goals for the long run
 – Look for (unexpected) signs of surface damage
 – Attempt to quantify reflection with calorimetry of return water

• Results
 – No surface damage observed (good)
 – Absorber becoming generally dirtier over time (not good)
 – Unexpected, faint OTR visible on camera (helpful)
 – Not enough power for convincing calorimetry, but no wild inconsistencies
Absorber Surface Before and After

Before

After

Contamination

Piece removed
Calorimetry Attempt

- Trip: current drops to 0
- Water return temperature: noisy, dT of 0.2°C visible with heavy averaging
Calorimetry Attempt

- Averaged a quiet 4h of “on” data and 12h of “off” data
 - dT of water with beam on is only ~0.2° C
 - Energy reflection looks like 17% (but with large error bars)
 - Expectation from Y. Eidelman analysis was 25% reflected
 - Lower reflection is favorable to the design
 - Data are poor and must be taken skeptically, but we’re in the ballpark
Agenda

• Recap of last update
 – Concept
 – History
• Progress made since
 – Absorber Components
 – Vacuum Box
 – Additional testing of existing prototype
• Next steps
Next Steps

• Opportunities for further testing at PIP2IT
 – Existing prototype still installed in MEBT 3.1 configuration
 • Moved to vertical orientation for integrated kicker system testing
 – If and when higher power can be sustained, should exercise the
 prototype further
 – May be able to refine reflection measurement by reducing water
 flow

• Absorber Fabrication
 – Finalize drawings of absorber to create bidding packages
 – Send out bidding packages for fabrication quotes
 – Get funding approval for fabrication
 – Fabricate
Schedule

• Technical
 - Focusing efforts on arriving at viable solution for energy deposition on secondary absorber
 - Then enclosure design can be finalized (allowing for earlier installation of empty enclosure)
 - Then absorber itself will be finalized

• Schedule
 - Fabrication in FY18
 - Procurements Begin in Q1 FY18
 - Assembly Begins in Q2 FY18
 - Ready for installation in Q3 FY18
 - Shooting to be ready before CDS shutdown