Status of the warm front end of PIP-II Injector Test (PXIE)

A. Shemyakin
PIP-II technical meeting
21 May 2016
Outline

• Operational status
 – Beam line
 – Subsystems
 – Radiation

• Measurements
 – In part, “BPM noise” and scraping

• Plans
Ion source/LEBT

- Ion source has recovered after a vacuum failure on April 10
 - Spark frequency dropped to ~ 1/day
 - Each spark requires a reboot of electronics at HV, but no more permanent damage
 - Changes in grounding and shielding (Greg Saewert & Co)
 - Damage to water hoses by discharges
 - Repaired; may need to modify the cage during the fall shutdown

- Modified the LEBT chopper to improve prevention of catastrophic scenarios
 - HV readback from plates
 - A new modulator with modified controls is being prepared (Greg)
RFQ

• Was RF - commissioned in true CW (May 4-5)
 – Only hours of conditioning required
 – Up to 63 kV of vane voltage (vs 60 kV nominal)
• Major failure of a RFQ amplifier (May 6); fully recovered
• There is ~60 kHz frequency offset in the cold RFQ
 – Can’t be easily corrected for short – pulse mode of RF
 • Operate both RFQ and bunching cavity at frequency shifted down from 162.5 MHz
• Work with RFQ frequency stabilization continues
• In general, operates stable

• Jim and Jonathan will give a detailed update in a couple of weeks
 – RFQ and LLRF, correspondingly
Present MEBT configuration

• Since previous report (3-May-2016), a second set of scrapers and the “SNS/HINS” beam dump is installed to move toward operation with higher average power.

MEBT-1.1 in May 2016

MEBT-1.1a in June 2016
Two doublets, one bunching cavity, two scrapers sets, beam dump, and diagnostics

Fermilab
Modes of operation

- Work mainly with a short pulse to avoid damage ("tuning mode")
 - 1.2 ms, 10 Hz, 5 mA pulse from the ion source
 - Chopping down to 10-20 µs with the LEBT chopper

- Recently received permission from Safety to start increasing the pulse length ("operation mode")
 - Longest pulse so far 0.3 ms (x 10 Hz x 5 mA = 15 µA)

- Presently beam timing is changed "manually"
 - Arden works toward having these modes implemented in MPS
 - With clear indication when insertable devices are allowed
Diagnostics

• Almost all diagnostics works to some extend
 – The only exception is Fast Faraday Cup
 • No explanation yet for the signal shape
 – See Vic’s presentation on June 7, 2016 for details
 – Work continues with the noise, error analysis etc.
 – Still need to learn how to use all capabilities

• A big challenge is to move toward long pulses/CW
 – Present scheme assumes reporting parameters after measuring the entire pulse
RF (Ralph Pasquinelli)

- RFQ amplifiers
 - Work with no problems
 - Most of the time, they are used in low-duty mode
 - Plan to assemble a test stand to have a spare module ready
 - Sigmaphi has most of spare parts ready; troubleshooting the main controller

- COMARC amplifier for bunching cavity work with no problems
 - With Fermilab’s controls and temporary circulator
 - Still no up-to-specs amplifiers with final controls
 - 7 kW 162.5 MHz circulator from McManus was received
 - Preparing for tests
Radiation

- Radiation from the dump is significantly lower than it was from the temporary Faraday Cup
 - Max measured rate is \(~0.2\) mR/hr at 12 µA average current at the top (with shielding removed) at contact

- Will move up with the pulse length
 - Limit for being allowed to enter the cave with beam running is 5 mR/hr @1’
Measurements

• Still only preliminary results
 – With downtime from failures and shutdowns, only several full weeks of beam measurements so far
 – Commissioning and understanding the diagnostics takes time

• Partial list
 – Optimization of beam at the RFQ entrance
 – Optics measurements
 – Beam alignment
 – Energy measurements
 – “BPM noise”
 – Preparing to work with high-power beam
 • Scraping

Will be reported in coming weeks
“BMP noise”

- At constant settings, BPM readings as seen by eye vary up to ~0.2 mm
 - Electronics noise or beam motion?
- Recorded 10 Hz signals (i.e. position of each pulse) for 2 min
 - Rms of 3rd BPM noise is 21 µm
 - Deviation at BPMs are correlated
 - Subtracting a linear combination of signals of first 2 BPMs from the last BPM’s signal decreases the noise to 6 µm
- Likely most of the noise comes from the beam motion

Typical data and its spectrum. 1-June-2016. No reproducible lines in spectrum.
Preparing to work with high-power beam

- In regular part of MEBT, beam power density is too high to be directly deposited to a surface when in CW mode
 - 2 mm rms, 2 MeV, 5 mA => 400 W/mm²
 - Can create damage even at tens of μs pulses due to local overheating

- Solution
 - Expand the beam into the dump
 - Cut transverse tails with scrapers
 - Avoid any large uncontrolled loss

- Spent several shifts with preparations and increasing the pulse length
Procedure

• Prepare settings working with 10 µs beam
 – Pass the beam to dump without measurable losses (<5%)
 – Increase the beam size until there are changes in vacuum and dump current; back a bit
 – Align the beam using halo electrodes
 – Insert all scrapers until scraping is clear
 • To protect vacuum chamber
• Increase the pulse length
Scraping

- Unforeseen problem: cross-talk between scrapers is large
 - With all scrapers inserted close to the beam, moving one of them into the beam results in a similar increase of currents in all scrapers
- Present solution
 - Move each of scrapers forth and back and measure the dump current changes
 - Set each corrector to the position with similar derivatives
- Caveats
 - Beam is elliptical
 - Upstream scrapers shield others

Current from the dump (black, 5 mA scale) and 3 scrapers while moving in the Right scraper. Horizontal axis scale is 100 mm. Scales for scraper currents: Right (blue) ~5 mA, Left (orange) and Bottom (brown) ~1 mA. All scrapers are initially close to beam.
Plans

- Plan stays as it was several months ago
 - proceed with installations of MEBT-2 in Sep 2016
 - + 4 riplets with dipoles, bunching cavity, kickers
 - Install the LEBT bend at the same time
- Vacuum chambers and supports are being prepared
- Magnets for the next MEBT step are mostly done at BARC
 - Finalizing the magnetic measurement stand
 - On schedule to have the magnets ready for installation in Sep
- Bunching cavities production is delayed by leaks in all 3
 - No new delivery dates yet
- 50 Ohm kicker is ready; 200 Ohm kicker is being assembled
- LEBT bend is being prepared for magnetic measurements
Recent contributors (partial list)

- **In beam shifts:** B. Hanna, J.-P. Carneiro, V. L. S. Sista, L. Prost, A. Saini, J. Steimel, A. Shemyakin, F. Garcia
- **RF:** R. Pasquinelli, D. Peterson, D. Sun
- **LLRF:** J. Edelen, B. Chase, A. Edelen, D. Bowring
- **Controls:** M. Kucera, T. Zuchnik, W. Marsh, L. Carmichael
- **MPS:** A. Warner, J-Y. Wu
- **Instrumentation:**
 - V. Scarpine, N. Patel, A. Saewert, B. Fellenz, N. Eddy, N. Liu, J. Bogaert
- **EE:** G. Saewert, K. Carlson, R. Brooker, J. Simmons
- **Mechanical:**
- **TD:** L. Ristori, T. Khabiboulline, S. Kazakov, S. Krave, S. Stoynev, G. Romanov, Vl. Kashikhin