RFQ Installation Plan

PIP-II Meeting, 14-July-2015

PIP-II Doc DB ID: PIP-II-doc-5
RFQ Installation Plan

- Planning and documentation
- Critical Activities
- Schedule
Planning and Documentation Status

- Top-level installation drawing (F10003341, draft)
 - Covers overall installation of the RFQ in the beamline
 - References some lower-level installation drawings
 - Lower-level drawings are mostly still in work
- Installation Plan document (ED0003340, draft)
 - Outline of installation sequence
 - RFQ handling/rigging instruction
 - In technical review for rigging safety
- Schedule
RFQ Installation Plan

- Planning and documentation
- Critical Activities
 - Focus on critical path and work requiring access to the RFQ itself
 - Shown here ~chronologically
- Schedule
Shutdown Start

• We need to start a shutdown and begin to clear the cave ~2 weeks prior to RFQ arrival
• Biggest impact is on LEBT operation and RF device testing
 • Affects power test of full 50ohm kicker – need to relocate this test

• Working plan is to start the shutdown on M 8/03/15
RFQ transport by LBL

- Dedicated transport on LBL-truck
- Vibration-isolating shipping frame

RFQ Shipping Frame: Pneumatic vibration isolation

M. Hoff, LBL
Unloading at CMTF

- Forklift shipping frame off truck and set on CMTF dock
Craning off shipping frame

- A delicate operation due to high center of gravity of RFQ
- Detailed instructions and stability assessment included in the installation plan
- Crane to a staging area outside of PXIE cave
Installation of LEBT scraper

• Done outside of cave before integration with beamline
• Risks largely retired by hardware tests in the LEBT
• After this work and associated survey is done, RFQ moves into the cave

Andrews, Snee
Coupler installation

- Couplers assembled piecewise on the RFQ
- As-found survey allows spec. of coax lengths
Installation of vacuum hardware

- Assembly allows final leak check and beginning of vacuum conditioning
RFQ Cooling

- Cooling lines installed late in the process because they will restrict physical access
- Biggest single installation task
- Current status:
 - Parts mostly on hand
 - Distribution manifolds constructed
 - Skids need to be constructed and installed
RFQ Coax

- Routing has been defined
- Most pieces will be available well before need
 - Significant re-use of HINS coax
 - Order of new pieces based on design lengths in coming weeks
- Final two pieces to be ordered to a surveyed length after RFQ installation and final alignment
Coax routing and alignment scheme

X and Y adjustments allow us to co-align elbows interfacing to this straight section. Survey this length after installation and order R6 and L6 per surveyed length.

Rotation at this flange gives adjustment in \(\sim X \)

Rotation at this flange gives adjustment in \(Y \)

At final installation, last section connected in this “U”
Parallel work

There is lots of other work to do to prepare for RFQ conditioning. To a large extent, it can proceed in parallel with the steps I’ve highlighted:

- Cabling
- Instrumentation
- Interlocks
- LLRF
- Etc.
RFQ Installation Plan

- Planning and documentation
- Critical Activities
- Schedule
RFQ Delivery: Assume 8/17

RFQ in cave and rough aligned 8/31

Couplers installed

RFQ under vacuum 9/11

Cooling system work complete 10/16

Last piece of coax installed 10/22

RFQ ready for conditioning
RFQ Installation Plan

Questions/Discussion?