200 Ohm MEBT Chopper Development Progress

Greg Saewert, Alex Chen, Mohamed Hassan

Acknowledgements: Jeff Simmons, Dave Franck, Howie Pfeffer, Dan Wolf

PIP-II Meeting

9 June 2015
Topics

- Helix assembly and test results
 - Alex Chen - mechanical and design, thermal analysis
 - 3D modelling results – Mohamed Hassan
 - Electrical time domain performance
- Progress with 500 V driver
 - On-going cascode switch results
 - LDRD alternative
- Conclusions
Helix Requirements

- Critical parameters
 - Traveling wave propagation velocity
 - Must match beam $\beta = 0.0667$ to $<1\%$
 - Impedance
 - Helix and load are impedance matched to $\sim5\%$
 - Dispersion
 - Less than 5% effect on beam
 - Power handling per each helix
 - Average power dissipation calculated to be 6 – 8 Watts with 200 Ω load at 35 MHz average switching rate
 - Specified to handle absorption of 40 Watts beam power
Helix Assembly

- One Helix built - Alex Chen’s mechanical design
 - Machined copper ground tube with water cooling
 - Stepped ends for better impedance match
 - High thermal conductivity ceramic spacers (4)
 - Vacuum compatible epoxy used at all ceramic-to-copper spacer interfaces
 - Fixture used to locate electrodes when laser-welded to each wire
 - All supports are ceramic
 - Design includes beam aperture restrictions
Helix Assembly

- Welded Electrodes
- Tube Is Stepped At Both Ends
- High Thermal Conductivity Ceramic Spacers (4). Notched For Each Wire Crossing
- All Ceramic-To-Copper Interfaces Are Epoxied for better thermal transfer
Residual Gas Analysis (RGA) results (1)

- Residual gases are Hydrogen, Water, and Air
- Hydrocarbons are very low
• Outgas due to electrical heating is insignificant
Temperature Rise (°F) (in air)

- Water Cooled
- Water Off, Power on
- Water @85°F
- ~4 °F rise
- ~50 °F rise above air
- Room @67°F

- Majority of power is conducted through the ceramic to water
Temperature Rise (°F) (in vacuum)

- 17 °F wire temperature rise with 40 Watts applied
Mohamed and I worked to resolve differences between model and bench test of actual helix.

Same approach used for critical measurements of both bench test and 3D model:

- Pulse edge of the transmitted voltage used to measure beta
- Reflection of pulse flattop used to determine helix Zo

Result: very close agreement:

<table>
<thead>
<tr>
<th></th>
<th>Target</th>
<th>Measured</th>
<th>3D Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zo</td>
<td>200</td>
<td>~185</td>
<td>189</td>
</tr>
<tr>
<td>β</td>
<td>0.0667</td>
<td>0.0633</td>
<td>0.0634</td>
</tr>
</tbody>
</table>

3D modelling can be used to adjust the helix to proper beta.
Helix – Complete 200 Ω System Electrical Test

- Best evaluation method is with time domain using applied pulses
 - Re-reflections at the output reveal errors
 - Helix end effect impedance mismatch
 - Mismatch between all joining sections
 - Helix-to-load mismatch
 - Helix dispersion readily evident on the transmitted voltage
ASSEMBLED FOR ELECTRICAL TESTS

Load side feed-through

200 Ω microstrip line

Zero Volt image plane
Helix – Feed-Through Connections

Driver End

Vacuum Side

Air Side

Load End

Vacuum Side

Water cooling line
Helix Electrical Test – Best Match, Low Power Resistor Load

- Re-reflections reveal all impedance mismatches
- Generator rise time = 1.5 ns
- No mismatch compensation yet applied
- Dispersive beam effects are ½ that shown
- Stepped-ends reduced helix mismatch end effects

Transmitted Voltage

Dispersion effects

Helix end effects + all line mismatches

5% error limit
Helix Complete Assembly – High Power Load

- Yellow – input signal
- Violet – transmitted voltage at the load
- Helix-to-load impedance mismatch is evident
- All other mismatches <5%

Helix end effects + all line mismatches

185-to-200 Ω mismatch

5% error limit
Progress with 500 V driver
Driver – 500 V Low-Side Switch Topology

- 5 stages operated at 2 MHz CW
- 4 stage version operated 22 MHz CW
- These CW limits caused by AC power distribution issue that can be easily resolved
- This effort halted during burst and CW testing

5-stage cascode switch assembly

200 Ω load
Driver – 500 Volt Switch

2.3 ns fall time,
~9 ns rise time (5-95%)

Cascode, low-side switch topology

200 OHM ATTEN.

0 V

3.5ns Flattop

-500 V

15ns Flattop
Driver – Cascode Switch Development Work

- SPICE circuit modeling effectively employed
 - Good GaN FET models obtained from Polyfet Devices Inc.
 - Models included measured PCB parasitics
 - Cascode model performance matched bench tests

- Spice modelling of the 5-stage bipolar switch indicated degraded performance in rise time and voltage sharing. Thus did not meet specifications.

- Effort shifted away from the cascode switch
Driver - Alternative Scheme

- In the development process it was determined that a single driver chain has very low jitter (~60ps). Because of this, one can consider driving all series switches individually with suitable isolation.

- Advantages to multiple stages driven individually
 - One switch each drives each helix
 - A high-side and a low-side
 - No bipolar switch needed
 - No dead time that “eats” up 2 ns during transitions

- A number of schemes are commonly used
 - Our speed requirement reduces the options to a unique approach

- Meanwhile, GaN FETs available by July from GaN System Inc.
 - 650 V rated (currently using 200 V rated parts)
 - Fewer than 5 stages would be required
 - A modified driver PCB required
 - Same driver circuit, only GaN FET footprint is different
Alternative Scheme – LDRD

- My LDRD proposal to develop a GaN FET driver was accepted to pursue an individually-driven approach
- Effort thus far accomplished
 - Used SPICE to design a new GaN FET driver board
 • Capable of driving higher capacitance GaN FETs
 • More efficient
 • Transformers used to communicate triggers to each board
 - PCBs laid out and on hand, with parts
 - Currently matching the timing of two boards to drive simultaneously
 - Pursued use of laser/photodiode as free-space communication link for better isolation than transformers (and simpler circuitry?)
 • Developed fast laser transmitter and detector receiver circuits
 • Evaluated multiple lasers and photodiodes in combination
Conclusions

- **Helix**
 - Impedance mismatches between sections are unmeasurable
 - Stepped-ends reduced helix mismatch end-effects
 - 3D modelling will be used further
 - Helix E-field kicker efficiency
 - Determine the helix dimensions of the next, “final”, helix
 - Will lowering Zo from 200 Ω help lower dispersion?
 - Out-gassing is not a concern
 - Ceramic spacers very effective in heat transfer

- **Driver development**
 - Cascode switch work has been suspended
 - Effort will be to develop a driver with LDRD resources
 - Specifications are defined following PIP-II requirements
 - Laser/photodiode free-space communication option is an option should transformers prove problematic
Reasons for helix geometry errors

- Dimensions chosen before improved beta measurement technique
- Ceramic spacer dielectric higher than vendor’s stated value
 - Technical division measured various ceramics and determined real value
- Previous prototype used ceramics having different dielectric constant
Factors, in combination, halted the cascode switch development

1) Parasitics degrade performance and increase with the number of states
 - Parasitics capacitance to ground
 - Inductance, especially lead length through the switch

2) 5 stages required for 500 V - using the Polyfet Devices Inc. GaN FETs

3) Cascode switch topology requires bipolar topology
 - Bipolar switch topology requires dead time during each edge (~2ns)
 - Circuit capacitance is double that of single low- or high-side switch
 - High circuit capacitance means higher current during the rise/falling edges