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Cost of Cavity Detuning

Narrow BW cavities with high
microphonics levels require more
RF power

— Beam can be lost if sufficient
reserve RF power to
compensate for detuning is not
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Effects of microphonics must be
considered in the design of the
entire project from the start



Sources of Cavity Detuning

* Pressure variations
— Important in both CW and pulsed operation

— Dominant source of detuning in CW cavities

e CCII (4K) shows swings in resonance frequency of up to 500 Hz over
periods of several minutes

e Mechanical vibrations

— Excitation of cavity modes by external vibration sources
 Mechanical
e Geophysical

— Relatively small (several Hz) for carefully designed systems

 Lorentz Force Detuning

— Not important for CW cavities (except during turn-on)

e Dominant source of detuning in pulsed mode cavities (~500 Hz in
Tesla Style Elliptical Cavities at 35MV/m)



Controlling Cavity Detuning

e Passive measures should be 0

exploited first r_RE

— Active control only after all passive
measures deployed

e Controlling detuning in narrow
bandwidth cavities requires
careful coordination of
— Cavity and Cryomodule Mechanical

Design
— Cryogenic System Design
— Civil Engineering
— RF Power and Control System Design



State of the Art LFD Control
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S1G Back-to-Back Comparision

e Alltuners
respond
very well

* Detuning
control
limited by
adaptive
bias
correction
rather than
cavity/tuner
design
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State of the Art Microphonics Control
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Further
improvements
possible if feed-
through can be
suppressed



Comparison with HoBiCaT

e Narrower
peak

e No
evidence of
large tails

— HoBiCaT
e 2K

— SSR1
. 4K

HoBiCaT and SSR1 and Active Compensation Comparison
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Field Magnitude

 OPEN LOOP
at 4K

e Magnitude
stable to
— 0.10% RMS

— 0.63% Peak
over 20
minutes
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Microphonics Plan for Project X

Brian Chase, Ruben Carcagno, and Gustavo Cancelo were asked to develop
a plan to deal with microphonics in Project X

Tried to look at the project as a whole
— Survey literature
— Discuss with FNAL experts
— Discuss with experts at other laboratories

Primary expertise of group members is active compensation of cavity
detuning and LLRF

— Able to draw on considerable outside expertise
Goal
— ldentify potential sources of cavity detuning
— Estimate possible detuning of Project X cavities by each source
— Develop a microphonics error budget for Project
Project X Document 629-v1



Project X Cavity Detuning Under
Various Scenarios

e Scenariol

— Attack detuning on all fronts

» Cavity pressure sensitivity and variation < 5 Hz/mbar
— measurement uncertainty at FNAL VTS

e Maintain pressure to within = 100 ubar (SNS)
e Limit vibration to o < 3 Hz (HoBiCaT)
* No pressure transients

e Scenarios 2-6

— Successively relax each of the above assumptions
* Pressure Sensitivity Variation => 50 Hz/mbar (CEBAF)
* Pressure Sensitivity => 100 Hz/mbar (CEBAF)
e RMS vibration level => 10 Hz (FNAL HTS)
e Peak pressure variation => 500 ubar (Linde)
* Peak pressure transients => 2 mbar (CEBAF)

e For all scenarios

— Compare no active compensation to active compensation of 15 dB (CClI,
HoBiCaT)

* To date suppression at this level has only been demonstrated in short term tests
involving single cavities



Total Microphonics Levels

Apply microphonics
to baseline design

Project X Document 450-v (Nikolai
Solyak,March 29 2010)

Many other scenarios
possible

Levels are intended
to be reasonable
orders of magnitude

e not best possible
* not worst possible

Numbers may change
as design continues
to evolve and our
understanding
improves but general
trends should persist
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Peak Presssure Variation (mbar) | 0.1 0.1 0.1 0.1 0.5 2
Mean Pressure Sensitivity
(Hz/mbar) 5 5100 100 100 100
Peak Pressure Sensitivity
Variation (Hz/mBar) 5 50 50 50 50 50
RMS Detuning due to
Mechanical Vibrations (Hz) 3 3 3 10 10 10
Peak Pressure Related Detuning
(Hz) 1 6 15 15 75 300
Peak (6 Sigma) Mechanical 18 18 18 60 60 60
Peak Microphonics (Hz) 19 24 33 75 135 360




Effect of Microphonics on

X

F Power

Cavity Type Cavity Parameter Scenario
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150 100% 101% 187%
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15
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Coupling optimized for detuning according to Eqn. 16 of JLab TN-96-022
Red cells indicate that detuning due to microphonics will require more power than baseline design

(Project X Document 450-v ) provides
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e Current PIP-1l detuning requirements are EXTREMELY AG RESSIVE

e Active compensation would almost certainly be required for every cavity type even in

CW operation

e Pulsed operation leads to significant complications
e LFD drives mechanical resonances
* Only able to measure microphonics accurately when RF in cavity

* Not clear that even state of the art active control will be good

enough
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Conclusion

e Detuning control for narrow bandwidth cavities requires careful
coordination of

— Cavity and Cryomodule Mechanical Design
— RF Control System Design
— Cyrogenic System Design
— Civil Engineering
e Current PIP-Il detuning control requirements are EXTREMELY
AGRESSIVE

* Active compensation would almost certainly be required for every
cavity type even in CW operation

e Pulsed operation leads to significant complications
e LFD drives mechanical resonances
* Only able to measure microphonics accurately when RF in cavity
* Not clear that even state of the art active control will be
good enough




