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Things to note...

« Data presented in this talk are only a small subset of the total
effort

« We collected data on both the LLRF system and the water
cooling system over about a month of testing consisting of
upwards of 15 shifts with help from many people

— Brian, Jim, Daniel, Philip, Ed, Auralee, Sunny, Lionel, Bruce,
Ralph, Dave, and | am probably missing someone

 These data allowed us to answer some key questions about
the machine but there is still much more work to be done
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LLRF system

« Amplifier amplitude scans

« Amplifier phase scans

« Temperature effects in the amplifiers

* Forward power trips

« Optimization for a short pulse with a clean turn on
* Initial beam compensation performance
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RF Amplifier studies (amplitude scans)
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RF Amplifier studies (phase scans)
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Reflected power in the
two amplifier
circulators as a
function of the phase
difference at the up-
converters

The optimum
operating point may
send some reflected
power to both
circulators

A phase difference at
the up-converter will
compensate for
mismatched RF
transport lines
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RF Amplifier studies (phase scans)
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This verifies sum
mode for maximum
coupling into the RFQ
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Amplifier characterization
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Forward power trips

Forward power left [kW]

100 I I l ! T ! l
80 L. . i
B0 b
A0Vt e
20 Nl ]

0 ; ; i ; i ; ;

20 40 60 80 100 120 140
Time [ps]

Forward power as
a function of time

as we ramped up

the set-point

Here we see a
spike in forward
power that caused
a trip

See next slide
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Forward power trips
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The spike in forward
power is brought on by
a drop in the cavity field

This particular spike
triggered the fast
interlock but it is clear
that feedback is over
driving the amplifier
Plan to adjust our
maximum forward
power so we cannot trip
the amplifiers
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Forward power trips
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Forward power trips
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Here we see the
amplifiers saturate
before we trip on
forward power

2= Fermilab



Forward power trips
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Summary of amplifier control

Mismatch in the amplifier delays is compensated at the LLRF up-
converters with a phase shift

Mismatch in the amplifier gains is compensated at the LLRF up-
converters with an amplitude scaling

Phase difference at the coupler for minimum reflection is zero for sum
mode as expected

We intend to implement slow feedback on the up-converter phase and
amplitude to account for temperature drift

Forward power trips seem to be under control since firmware changes.
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Optimization for a short pulse
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Optimal gain region is
shown in yellow

Note there is no beam
disturbance in this
scan



Optimization for a short pulse

Proportional gain
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Optimization for a short pulse
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Optimization for a short pulse

Cavity phase
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Cavity phase as a
function of the feed
forward magnitude and
the feed forward ratio.

There is little to no effect
on the cavity phase due
to the changes in the
feed-forward magnitude.
This is intuitive and
expected

These parameters help
to ensure a smooth turn

on as will be shown a
little later
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Optimization for a short pulse
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This is an averaged
parameter and therefore
dominated by the LLRF
system trying to get to full
field

Turn on is smoothest for a
feed forward amplitude of
about 0.2 with a feed

forward ratio between 0.5
and 0.8
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Optimization for a short pulse
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Feedback with a short pulse and beam loading
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Feedback beam compensation (gain scans)

10 Carwty voltage

9 63.0
« Cavity voltage at flat
58.5 .
top as a function of the
5 510 proportional and
T integral gains with a the
£ 495 beam disturbance
£ « Optimal gain region is
-0 shown in yellow
40.5
‘ 36.0

1 1 1 1 1
0 200000 400000 600000 800000 1000000
Integral gain

2= Fermilab



Feedback beam compensation (gain scans)
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Temperature effects on the RFQ resonant frequency

« QOver several days of testing we measured transient
frequency response in the RFQ due to changes in the water
system and with changes in the RF heating

« Ongoing effort to compare these results with simulation

— Continuing to refine the thermal model

— Generally speaking the model is a very good representation of
the system

— Currently working on a manuscript describing the technique and
showing performance

« These data will be used by Auralee to design a data-driven
resonance controller for pulsed operation
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Thermal studies
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Thermal simulation using data collected during testing
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Frequency response simulation

Frequency shift [kHZ]
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effective thermal
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Pl control simulation
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Simulation of PI
control on the vanes
using data gathered
during thermal testing

Spikes in resonant
frequency occur
when the wall valve
changes
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Summary

Established stable operating points for the RFQ LLRF with a
short pulse

Investigate the conditions that cause LLRF to over drive the
amplifiers

Optimized feedback and feed-forward to compensate for
beam loading

Characterized frequency shift due to perturbations in the
water system and RF system

Demonstrated a good comparison with simulation
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Ongoing work / future work

 LLRF

— Implement firmware changes as necessary (we have a revision on its
way)

— Finish studying and commissioning the adaptive beam compensation
algorithm

* Requires software changes and some study time
— Reduce the LLRF max output to inhibit overdriving amplifiers during
cavity spark
— Improve frequency tracking algorithm needed for CW operation
« Resonance control
— Finish manuscript on thermal modeling of the RFQ and water system

— Design and implement data driven controller for pulsed mode
operations

— Resonance control for CW
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