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Why Knowledge of Longitudinal Impedance is
Important?

B PIP-IT requires 1.5 times increase of beam intensity in Booster
within the same longitudinal and transverse emittances

B Transition crossing can be a problem

B Discussion will be concentrated at the beam energy range near
Transition crossing
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Impedance of Booster Laminated Magnets

B Longitudinal impedance of round pipe per
unit length
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B Laminations greatly amplify impedance

¢ (1) <Ju, (2) longer current path

¢ Impedance of flat chamber

per unit length
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B Accuracy: the model is good in the required frequency range
(0.1 MHz -1 GHZ2)
but: A? (Packing factor), &2, 1?
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Permeability of Soft Steel

B At high frequencies the skin depth is smaller or comparable to the
maghetic domain size
B Measurements @FNAL in summer of 2011

Proceedings of IPAC2012, New Orleans, Louisiana, USA WEPFDOTY

MEASUREMENTS OF MAGNETIC PERMEABILITY OF SOFT STEEL AT
HIGH FREQUENCIES

Yu. T{_'rkpiil'll.'!‘k'#.. V. Lebedev, W. Pellico, Fermilab, Batavia, IL 60510, USA
B Wave propagation in transmission line made from soft steel and
located in external magnetic field

Micro-strip line : Micro-strip line
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Figure |: Schematics of the expenment with steel in DC
magnet. The normal onentation 1s represented on the lett,
and the parallel one on the nght.
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Permeability of Soft Steel: Results

B Magnetic permeability used in
the estimates
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taken into account =8, | _ |
¢ Steel conductivity at high g
=14 ]
frequencies is assumed to be 15 - ooy
the same as for DC Figure 3: Dependence of magnetic permeability of steel

on frequency for different magnetic fields for the case of
magnetic field normal to the strip plane.
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Parameters for the impedance estimates

B Gap between platesis ~ Dipolete d D
Dipole length 289 m
taken from known Number of dipoles 38 a8 em
. Half-gap. a 21 29 cm
packing factor (Booster % T - =
design r'epor"l') Lamina thickness, d 0.6 mm
. . . Dielectric crack width, 2 Lum
B Dielectric gap- Conductivity. & 207-10% (23105 QT ml) | s
epoxy + insulating oxide  Didectic pemitiivity. £ 475

layer on steel
B F dipole has smaller gap and larger impedance

Re(Z,) - F dipole
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Dependence of longitudinal impedance of Booster dipole

on the frequency computed for F and D dipoles.
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Wire Measurements of Di

ole Im

pedance

F magnet impedance
dotted trace 3500 ||.5uH

o
2
Q

I
-
-

o]
=
Q

ohms/magnet

O 200 400 o600 800

Frequency [MHz]

D magnet impedance
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Taken from. James L. Crisp and Brian J. Fellenz, "Measured Longitudinal Beam Impedance of
Booster Gradient Magnets”, Fermilab- TM-2145, March 22, 2001.

B Decent coincidence with the impedance estimate
¢ However F magnet impedance ~30% lower than for D-magnet

instead of being 10% higher

= We should expect that each dipole has its unique

impedancel

= Measurements of total impedance are required
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Contributions to the Total Booster Impedance
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Resistive impedance of stainless steel vacuum
chamber: L=197 m, p=74-10° Q/cm, a=4.13 cm
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transition: L=474.2 m, a/c, =4
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Total resistive impedance of Booster laminated
magnets: 48 F dipoles +48 D dipoles

B Space charge Longitudinal
impedance (per unit length)

Z(w) =128 29 | 2
A BTy°C 1.06 o,

B Stainless steel chamber
contribution is negligible

B Tmpedance of laminations
dominate the total impedance




Impedance Induced Voltage

B Rms bunch length at transition 6.20.75 ns
¢ Rms width of bunch spectrum o¢ = 1/(2nc,) # 212 MHz
= Major contribution to the beam induced voltage comes from
the impedance of laminated dipoles

Maximum deceleration

v/ 20 T T ||_
[kV] - ﬂ:] voltage - 80 kV/turn
0
V due to V due to The beam deceleration
~20F SC impedance |, averaged over bunch:
e o Booster. V = [V (s)p(s)ds = 54kV/turn
sol | T For accelerating voltage of
Lt 670 KV (pocc=61°) used in
- 80 e T . 0 the below measurements it
-5 5

should produce the shift of

i
Voltage per turn induced by ring impedances bunch accelerat ng phase
14 turn injection, 82 bunches, 4.3-10% protons by 9.9 deg.

t [ns]
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Longitudinal Impedance Measurements

B Direct measurements of Z(®) requires a continues beam

B Shift of acceleration phase with bunch intensity allows us to check if
the considered above model, as well as single dipole measurements,
are applicable
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Data Acquisition and Acquired Data

B Fast digital scope
¢ T=1ms centered around transition
¢ At=0.533 ns, 1.875:10° pom’rs per‘ channel, 36 pounTs per' RF

bucke’r e

B Signals
¢ RF sum
¢ Wall current

monitor

B Beam parameters
¢ Intensity: 4,6, 8,

10, 12 & 14 turn

Booster injection

e 14 turn=4.3-10"
¢ 82 bunches,)

WAIT FOR EYEMT
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Supplemental measurements
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B Signals coming from low level RF were also aquired but their analysis
was not carried out yet
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Measured Signals and Data Analysis

0.6 T T T
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B An algorithm computes
¢ RF signal
e Zero crossing time for each period
e RF voltage for each period (relative units)
¢ WCM signal
e Fitting by parabola in vicinity of each peak (each bunch at each turn)
= Bunch arrival time
— Peak height
— Peak width
¢ Time difference between RF zero crossing and bunch arrival time yields
the relative accelerating phase
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RMS bunch length
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B Small variations in presented data (1 ms near fransition)

¢ Rms bunch length is ~0.75 ns
B Dispersion in the cable widens the bunch signal

¢ Rms bunch length (time) is estimated from the emittance

e Coincides with the experience obtained from other similar
measurements
¢ Beftter accounting for cable dispersion is required
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RF phase [deg] RF Voltage

Results — . . .
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Results (2)

RF phase [deg] RF Voltage
] T T T
180 T
1|
Ll
1
160 opd
s
R6, o ) N \u, R6,, U
o . ",
R10, ¢ . ¥ | R0,
| ' R
R12, o140 | N RI2,
R14, ¢ | f:‘ , ¥ R14;
o ' s L P - - - g3
2 i
Iu_ﬁ._“- |
Perfias f
100 !
Il 0 | | ]
0 200 400 500 0 200 400 600
hi | n

B Expected dependence of phase shift on intensity
B The transition results in additional energy loss and therefore the

phase shifts after transition can be screwed up
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Results (3) - . .

160F e =

B Phase change at transition yields L
independent measurement of By
accelerating voltage (acceleration rate "~

*ee . o,

is known to good accuracy) v, MO
=> Vp=670 KV, ¢qcc=61->119 deg S
¢ Accuracy is not great because the slope —::_;;jib
of the RF phase shift with intensity is 120 -
twice higher after transition .
B The value of accelerating phase shift ¢
with intfensity measured before o ] ,
transition is 11.9 deg. for 14 turn L1
injection (4.3:10% p)
B Coincides comparatively well to the expected value of 9.9 deg.
¢ Inaccuracy is mainly determined by knowledge of
e RF voltage and accelerating phase at transition and
e the bunch length measurement (to be improved by accounting of cable
dispersion)
e Wake changes bunch symmetry (rel. to its center) => changes bunch center
¢ Further analysis should improve this results
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Conclusions

B Experimental measurements of effective longitudinal impedance
verified that the model of laminated dipole impedance describes the
observations comparatively well

¢ Additional analysis is required to improve an accuracy of the
measurements

B Af transition, when the bunch is short, the peak of beam
deceleration due to Booster longitudinal impedance will be in the
range 130-150 kV/turn for PIP-IT parameters

Stochastic Cooling and its Limitations, Valeri Lebedev, EIC-2014 18



