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Emittance scanner motivation

• Diagnose the beam properties

• Analyse the 6D phase space

• Calculate accurate and precise emittance values

• Tune the ion source beam parameters

• Optimise transportation into the RFQ
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How do we diagnose the emittance?

Emittance scanners:
• All types require a method to measure the spatial and 

angular divergence of the beam
• A slit-slit scanner operates by moving two identical slits 

separately, recording a set of x’ for each x position*

• An Allison Scanner operates under a similar principle but 
keeps the slits fixed relative to each other, using a pair of 
electric plates to select a range of angles

*NB – x/y and x’/y’ are used interchangeably throughout this presentation. In the case of 
the emittance scanner they both refer to the vertical axis.



SNS Allison Emittance Scanner

Key Components:
• Front and back slits
• Electric plates

 Sawtooth design to
eliminate forward scattering

• Faraday cup

• A voltage sweep across the electric plates provides a range 
of x’ values

• Physical movement of the box provides a range of x values
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Water Cooled Allison Scanner
 SNS supplied detector, linear motion 

stage and vacuum plate
 FNAL-built vacuum chamber and 

assembled system
Typical operational Parameters

 x range: ± 20 mm
 x’ range: ± 30 mrad
 Phase map dynamic range: >103

• Algorithm
 Move to x-position
 Perform a voltage sweep for x’
 Move to next x-position, etc.
 Analyse Phase space

Installation
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Installation

Scanner fully assembled in the test stand

Front slit
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Back plate



Installation

Solenoid

Ion source

Beam

Emittance scanner

Donut

Faraday cup
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Calibration

• Position, angle, and timing windows require calibration 
before data-taking can commence

• Movement of the scanner can be confirmed using rulers, 
spring gauges, etc.

• The read-back given by the Labview position scale is 
accurate to ± 0.15mm

• The scatter from repeated motor-stops/-starts across a full 
scan is ± 0.11mm
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Calibration - Angle

solenoid emittance scanner

x

y

beam

Previous beam size measurements 
were performed using the donut

The calibration of the correctors 
was well established

1.75 mm/A

1.08 m
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Calibration - Angle

∆x’

∆x

• The centroid values of 
both x and x’ were taken 
across a range of 
corrector values

• d = ∆x/∆x’ = 1/0.84 = 
1.19 ± 0.02 m 

• The voltage-to-angle 
conversion in the 
emittance scanner 
configuration file was 
therefore adjusted by a 
factor of 1.1 to account 
for the discrepancy 
between 1.19 and 1.08
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phase space shift



Calibration - Error
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• Statistical errors from reproducibility are limited to a few 
percent

• Error in position is well defined via a number of 
measurement devices to the order of < 1%

• The main source of error in emittance scanner data will 
arise from the angle output as the calibration for this was 
performed via a corrector scan, with an intrinsic error 
range for the correctors themselves

• At present a < 10% level should be assumed for 
emittance scanner data presented



Calibration - Timing

0s 30us 50us 20us timing window

200us

170us

190us

• It was necessary to 
define the timing window 
such that all the triggers 
were relative to known, 
absolute delays

• The total timing window 
was then subdivided into 
‘slices’ so the evolution 
of the pulse may be 
analysed
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Emittance scanner data sampling

• The emittance scanner takes data across a range of x
and x’, and places them in an array of the form:

x1 x2 x3 x4 … xm

x’1

x’2

x’3

x’4

…

x’n

N11 N12 N13 N14 … N1m

N21 N22 N23 N24 … N2m

N31 N32 N33 N34 … N3m

N41 N42 N43 N44 … N4m

... ... ... ... ... ...

Nn1 Nn2 Nn3 Nn4 … Nnm
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An example data file 
may run from -30 to 30 
mrad and 70 to 100 
mm (defined as the 
insert distance from the 
home switch at x = 0)

Both dimensions are 
then centered

Each data file has one 
3D array per time-slice



Pulse measurements

*NB – due to a flipped definition of spatial co-ordinates all phase-space plots on this slide 
should be reflected at x = 0

• The evolution of the 
phase space along 
the 400us pulse

• The shape settles 
down after ~300us



Pulse measurements
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• Both the emittance and RMS beam size also level out 
after approximately 300us suggesting a neutralisation
time shorter than this



Definition of emittance

• Numerically it may be defined in different ways: RMS 
emittance, 95% emittance, etc.

• In this talk it will be defined as a multiplication of moments 
(unless otherwise stated):

where xj and x’i are the new arrays after centering
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Threshold Cuts

• Before the emittance is calculated it is necessary to 
consider a threshold choice for potential backgrounds

• All scans will record a certain amount of background:
 Secondary electrons, protons, neutrons, etc.

• A threshold cut should serve to remove this background, 
but what value should be chosen?

Negative readings from the Faraday plate
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Threshold Cuts

• In the code a 
threshold cut is 
defined as a 
percentage of the 
peak Faraday 
plate value in the 
array

• In this case a 1% 
cut is made, 
serving to remove 
all negative signal
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Threshold Cuts

• As can be seen the emittance peaks at a 0% cut i.e. 
removing only the negative faraday cup array elements

• There is a distinct drop 
off from 0-1%, then a 
lower gradient after

• Both 0% and 1% cuts are 
presented in the next few 
slides as a guideline to the 
effects of thresholding20

2mA data from 25/06/14



Results - Reproducibility

• All data sets taken across the course of a single afternoon, 
irrespective of a change in solenoid current, produced an 
emittance variation of ~3%

• These were all taken with identical ion source parameters.

date time beam current / mA sol. current / A norm. emit (0%) / mm.mrad norm. emit (1%) / mm.mrad
23‐Jun 14:53 2 152 0.161 0.151

15:08 2 154 0.159 0.149
15:23 2 156 0.159 0.147
15:31 2 150 0.159 0.149
15:39 2 148 0.161 0.151
15:49 2 149 0.159 0.148
15:56 2 151 0.158 0.147
16:05 2 153 0.158 0.148
16:14 2 155 0.158 0.147

2.0% 2.7% 
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Results - Reproducibility

• This is compounded by data taken over night with 
identical ion source parameters, in this case with a 5mA 
beam

date time beam current / mA sol. current / A norm. emit (0%) / mm.mrad
24‐Jun 16:49 5 152 0.150
25‐Jun 10:52 5 152 0.1462.7% 
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Results – Gas flow effect

• Changing the gas flow, whilst keeping the beam current constant 
via small alterations to the extraction electrode voltage, has a 3% 
per sccm effect on the emittance

1% threshold cut 

0% threshold cut 

• This requires further investigation once the 
emittance scanner is reinstalled
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Results – Large beam current

• A change in beam current (achieved by varying all ion source 
parameters, including gas flow) leads to a substantial change in 
RMS emittance. In this case a factor of 3.6-3.8 across 1-9 mA

• The TRIUMF data demonstrates the ability of the ion source; 

24

we need to 
investigate 
whether these 
results are 
reproducible with a 
three-solenoid 
beam line



Emittance comparison

• Comparison between the emittance scanner results and 
those of the donut also need to be considered

• The most recent data set for the donut was taken on the 
6-Jun-2014 for 2mA with ε= 0.084 ± 0.008 mm.mrad:
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• Statistical errors are of a few 
percent

• The main source of error for the 
donut measurements arises from 
the dependency on the models 
used for fitting. e.g. is the beam 
gaussian or flat-top? etc. At 
present they are understood to 
the 10% level



Emittance comparison: N(J)

Method
1. The alphas and betas are calculated for all values 

above 0%
2. The action is calculated for each data point, e.g.

J11 = γx1
2 + 2αx1x’1 + βx1’2

x1 x2 … xm

x’1

x’2

…

x’n

N11 N12 … N1m

N21 N22 … N2m

... ... ... …

Nn1 Nn2 … Nnm
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Emittance comparison: N(J)

Method
3. This gives vectors of J with their corresponding N
4. By ordering the vectors according to the size of J, and 

plotting this against the decreasing sum of all N values 
(for 0%) above a given action, a monotonic plot is given. 
This is analogous to a plot of % vs. emittance

5. An exponential fit of N = N0e(-J/2ε) to the straight section 
of the curve should yield the emittance
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Emittance comparison: N(J)

• The 25/06/14 2mA data set 
(with similar ion source 
settings to the donut data 
from 06/06/14) gives an 
emittance value of ε = 0.082 
± 0.008 mm.mrad
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Results - Collation

RMS (0.5% cut) εN(J) Donut TRIUMF
emittance / mm.mrad 0.079 0.082 0.084 0.085

• For a 2 mA beam, created using similar ion source 
settings, the emittance values for different analysis and 
methods are the same within the current 10% error 
range:

• These results concern themselves primarily with the core 
of the phase-space ellipse. This is adequate for initial 
estimates but further understanding of the 
halo/tails/wings is essential in moving forward
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Summary and Conclusions

• The emittance scanner has been commissioned and 
calibrated. It was used primarily in pulse measurements 
but was tested up to full power, 300W DC

• The absolute error in measuring the RMS core emittance
is < 10% and is dictated by the angle calibration

• The emittance scanner measurements with a 2mA beam 
current agree with the donut result, as well as with the 
acceptance test at TRIUMF, within the measurement 
errors 

• Capability of the emittance scanner to analyse the phase 
space evolution during neutralization time in a single set 
of measurements was demonstrated
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BACK UP SLIDES

• Beam profile evolution:
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BACK UP SLIDES

0% 25% 50%
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